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H I G H L I G H T S  

• Assessments for eye-level vegetation density from computer visions and human perceptions were compared for accuracy. 
• All three measurements agreed, but the selected color detection tool had higher agreements with human selection. 
• Vegetation density predicted the odds of disagreements between the selected semantic segmentation tool and other tools. 
• Landscape designers, planners, and researchers can use these tools to assess eye-level vegetation density of large number of photographs.  
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A B S T R A C T   

Landscape architects and planners have been assessing eye-level vegetation to develop evidence-based designs, 
including the relationships between urban nature and human health. Measuring eye-level vegetation was often 
subjective and time-consuming in the past. Recent advances in computer vision have made it feasible to auto-
matically measure eye-level greenery at a large scale. However, researchers still know little about the agreements 
of recent machine-based methods with human perception. The research gap may lead to inaccurate or even 
misleading findings that may prevent effective design and planning. 

This study tested the agreements between eye-level greenery detected by two machine-based methods (Brown 
Dog Green Index Extractor (BDGI) and PSP-Net) and human perception (manual selection via Photoshop His-
togram). These two machine-based tools were selected because of their distinctive mechanisms: color detection 
and semantic segmentation. Cronbach’s alpha, correlation test, and Bland-Altman’s Plots were used to test 
agreements. Then, logistic regressions were used to find relationships between shades and vegetation density and 
the disagreement odds. Both tools closely agreed with human assessment in predicting eye-level greenery, with 
BDGI slightly closer to human. Vegetation density, but not percentage of shade, predicted the higher disagree-
ment odds between PSP-Net and others. This finding will help advancing computer-based assessment of urban 
nature and contribute to our knowledge in assessing and linking eye-level greenery with potential outcomes such 
as physical and mental health and other design assessments.   

1. Introduction and literature review 

Compiling evidence suggests that urban nature is a crucial 

infrastructure for cities (Austin, 2014). It provided multiple aspects of 
ecosystem services, including promoting human health and well-being 
(Coutts & Hahn, 2015; Jiang et al., 2015b; Sullivan et al., 2014; 

* Corresponding author at: Landscape Design and Environmental Management Studio, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai 
University, Thailand. 

E-mail addresses: pongsakorn.sup@cmu.ac.th (P. Suppakittpaisarn), yilu24@cityu.edu.hk (Y. Lu), jiangbin@hku.hk (B. Jiang), slavenas@illinois.edu 
(M. Slavenas).  

Contents lists available at ScienceDirect 

Landscape and Urban Planning 

journal homepage: www.elsevier.com/locate/landurbplan 

https://doi.org/10.1016/j.landurbplan.2022.104547 
Received 3 March 2021; Received in revised form 29 July 2022; Accepted 16 August 2022   

mailto:pongsakorn.sup@cmu.ac.th
mailto:yilu24@cityu.edu.hk
mailto:jiangbin@hku.hk
mailto:slavenas@illinois.edu
www.sciencedirect.com/science/journal/01692046
https://www.elsevier.com/locate/landurbplan
https://doi.org/10.1016/j.landurbplan.2022.104547
https://doi.org/10.1016/j.landurbplan.2022.104547
https://doi.org/10.1016/j.landurbplan.2022.104547


Landscape and Urban Planning 227 (2022) 104547

2

Suppakittpaisarn et al., 2017; Tzoulas et al., 2007). However, in order to 
understand the relationships between the amount of nature and co- 
benefits towards human well-being, landscape researchers and practi-
tioners need ways in which they can accurately assess the quantity of 
urban nature that humans experience in their everyday lives (Jiang 
et al., 2017; Kang et al., 2020). 

Currently, researchers adopt three types of urban nature assessment: 
survey, top-down imagery, and eye-level imagery. More evidence sug-
gests that eye-level imagery is the closest to human’s experience (Jiang 
et al., 2017). However, a critical question remained unanswered clearly: 
How do researchers, planners, and designers accurately measure the 
level of greenness in urban settings? 

In the past, the ways in which researchers assessed eye-level vege-
tation density were time-consuming. Recently, several computer vision 
tools have been introduced to measure the level of vegetation density in 
eye-level images with distinctive pathways (Padhy et al., 2015; Zhao 
et al., 2017), but they have never been compared to see the extent to 
which they agree with each other and with human-based perception. 
The measurement test is important because it allows the landscape de-
signers, planners, and researchers to use these tools more confidently 
and make direct comparisons between the results. Understanding the 
relationships between the tools can help improve the computer-based 
assessment of urban nature. Furthermore, the deeper understanding of 
these tools might lead to a faster growing body of evidence towards the 
relationships regarding dose of nature and human health. 

This study aims to find the extent of agreement between a mea-
surement from each of the three current approaches in assessing vege-
tation density: human selection, color detection, and semantic 
segmentation. 

1.1. Urban nature and human health 

Urban natural elements have positive effects on human health and 
well-being (Coutts & Hahn, 2015). Evidence shows that being in contact 
with nature improves overall physical health (Astell-Burt & Feng, 2020; 
Becker et al., 2019; Hartig et al., 2014), reduces risks of mental 
morbidity (Cohen-Cline et al., 2015) and cardiovascular diseases 
(Mitchell & Popham, 2008) and promotes social engagements (Coley 
et al., 1997) and mental well-being (Ulrich, 1999). 

This may be explained by several theories. Biophilia-Biophobia Hy-
pothesis posits that humans still have deep physical and emotional 
bonds with the nature in which humans survive as a species (Kellert & 
Wilson, 1993). The hypothesis was later expanded upon by Stress 
Reduction Theory, or Psychoevolutionary Theory, which posits that 
humans evolve to perform well, physiologically and psychologically, in 
the environment in which they thrive: among trees and open spaces. In 
contrast, being removed from that environment for a long, consistent 
duration may cause physiological and emotional issues (Sullivan, 2005). 
Another theory involving human and nature is Attention Restoration 
Theory. The theory suggests that directed attention, a limited but crucial 
resource for everyday life, can restore more effectively while humans are 
interacting with nature (Kaplan, 1995). 

These theories and large body of evidence all suggest that humans 
need regular and accessible contact with nature. Thus, even though 
people are living in the urban environment, designers and planners must 
make sure to include nature, especially trees and open spaces, in peo-
ple’s everyday lives to ensure and enhance their health and well-being. 

1.2. Dose of urban nature and human well-being 

One of the remaining questions regarding the relationships between 
urban nature and human health is dose. Landscape researchers are still 
finding and suggesting the relationships between different intensity, 
frequency, and duration levels of urban nature towards human health 
(Jiang, 2013; Sullivan et al., 2014). 

Among those, the quantity of urban nature that humans can perceive 

can be directly influenced by landscape designers and planners. Urban 
spaces are highly in demand; thus, landscape designers and planners 
should find ways to balance urban nature with other infrastructure. This 
means that researchers, in support of planners and designers, must find 
ways to assess the quantity of urban nature to measure its relationship 
with human health and well-being. 

There are three ways that researchers usually assess the quantity of 
urban nature, such as vegetation density, in a landscape: on-site survey, 
top-down imagery, and eye-level imagery. On-site survey had been used 
to assess landscape density for a long time. Mostly, the assessor esti-
mated the quantity of landscape elements in the Likert scales of one to 
five. While this measurement addressed the human perception quite 
well, it may be subjective to the assessors’ experiences and perspectives. 

Another means of quantifying urban nature includes top-down im-
agery. It was one of the most widely used measurements in today’s study 
about dose of nature and human health. Top-down vegetation density is 
calculated by percentage of vegetation shown in a space in proportion to 
the total area. It can be used to study sustainable urban development, 
quality of the forests, or human-nature relationships (Donovan et al., 
2015; Gariepy et al., 2014; Kardan et al., 2015). However, the top-down 
vegetation density cannot accurately describe the greenness perceived 
by people from the eye level in daily life. Some parts of vegetation, while 
in proximity with people, may not be physically or visually accessible to 
those citizens depending on their locations, surroundings, and property 
types (Jiang et al., 2017). 

Many researchers, then, argued that the more suitable way to mea-
sure quantity of urban nature is by combining the ways in which humans 
daily experience with urban nature with the percentage calculation 
often used for top-down vegetation density (Jiang et al., 2017; Lu, 
2019). A study had shown that photograph assessment and on-site 
assessment of a place by humans provide similar results (Shuttle-
worth, 1980), and later study suggested that the vegetation density 
calculated from eye-level photographs is closer to what humans 
perceived (Jiang et al., 2017). The scene can be assessed from different 
angles to provide composite scores (Li et al., 2015). Furthermore, the 
emerging dataset of publicly available eye-level photographs, such as 
Google Street View, provides researchers to study these eye-level images 
in the spatial scale (Kang et al., 2020; Lu, 2019). Furthermore, studies 
conducted in the recent years have linked eye-level vegetation density to 
many positive human well-being (;Jiang et al., 2014a; Jiang et al., 2020; 
Li et al., 2018a). However, even though they are more similar to how 
people experience the landscape, the number of studies that use this 
assessment is far lower than satellite vegetation density (Suppakittpai-
sarn et al., 2017). 

1.3. Eye-level landscape assessment: From human to computer-based 
tools 

The quantification of landscape elements had been used as research 
tool for a long time. One of the earliest published examples include the 
study of Scenic Beauty Estimation Model (Daniel & Schroeder, 1979). 
Untrained panels of participants saw images of forests and estimate its 
openness, tree sizes, and groundcover density before correlating them 
with the perceived aesthetic of the forests measured by Scenic Beauty 
Estimation Method (Daniel & Boster, 1976). Later, the aesthetic as-
sessments were tested between eye-level photographs and in-situ as-
sessments via a meta-analysis study: They are found to be highly 
correlated (Shuttleworth, 1980). 

The measurement of eye-level landscapes started having links with 
dose of nature and human well-being at the first decade of the 21st 
Century. From year 2000–2010, the field of landscape architecture was 
in the middle of transition from modernism into post-modernism design 
(Milburn et al., 2003). This shifting focus led research studies in the field 
towards well-being and sustainability. In 2001, a study in inner city 
housing used horticulture and landscape expert to rate the greenness of 
the housing grounds to assess levels of crime and aggression found (Kuo 
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& Sullivan, 2001). During these developments, Nordh et al. (2009) 
divided the landscape images into grids and assessed the contributions 
of those landscape elements with mental restoration. 

In the same year, another technique in landscape assessment 
emerged. Photographs from street views were analyzed for vegetation 
density by calculating the percentages of vegetation pixels found in the 
images (Yang et al., 2009). In this paper, they briefly explained that the 
pixels were manually extracted using Photoshop Histogram tool, a 
hybrid between human judgement and machine calculation. 

In the most recent decade (2011–2020), the ways of quantifying 
vegetation in the landscapes have been rapidly established, tested, and 
expanded. Street photography became a growing measurement of urban 
elements in design. 

Among the most notable studies was a series of experiments estab-
lishing the dose of nature and human health and well-being. In 2014, a 
study used 50 panoramic videos comprising of varying level of vegeta-
tion density to understand the dose–response curve between vegetation 
density and stress recovery through cortisol level (Jiang et al., 2014a). 
The vegetation density levels from the videos were selected manually 
using Photoshop Histogram Tool. The distinctive quality of the study 
was that it presented the comprehensive steps in using manual selection 
of vegetation density by Photoshop Histogram Tool, making the tool 
more replicable and accessible to researchers. The subsequent studies 
were done with the same tool to find the dose-curve relationships be-
tween vegetation density and self-reported stress recovery and land-
scape preference Jiang et al., 2015a; Jiang et al., 2014a 
Suppakittpaisarn et al., 2020). In these studies, the researchers used the 
Quick Selection tool to manually pick the pixels that contained trees and 
shrubs. Then they used the Histogram Tool to determine the number of 
the pixels which were vegetation and calculate the percentage of vege-
tation from the picture. Their method is replicated again in their study 
comparing vegetation density between satellite imageries and eye-level 
images (Jiang et al., 2017). Another study has also used this method to 
determine dose–response curve between tree density, understory plant 
density, and bioretention planting density and preference (Suppa-
kittpaisarn et al., 2019a). Photoshop Histogram was directly identified 
by subsequent studies as a tool for identifying vegetation density. For 
example, one study used it to relate street greenery and walking 
behavior (Zang et al., 2020), and another to identify sense of safety and 
privacy (Lis & Iwankowski, 2021). 

While this hybrid assessment of vegetation density retained the 
benefits of human judgement and finer details of calculation, the process 
is highly time-consuming and may not be suitable with studies with 
larger dataset, which had grown larger due to the involvement of Google 
Street Views. Google Street Views became an important tools for this 
decade because they were readily available and effective representation 
of a place from eye-level perspectives (Kang et al., 2020). However, the 
dataset became too large to manually assess the eye-level greenery from 
these photographs. Thus, there were growing needs of computer aided 
assessment that could make the process more time efficient. 

Concurrent with the development of the manual use of Photoshop 
Histogram Tool, computer vision and machine learning had developed 
rapidly in this decade. Two distinctive directions were used to detect 
vegetation in two-dimensional photographs: color detection and se-
mantic segmentation. 

Color detection has older roots from top-down imagery assessment. 
The machine can identify pixels with varying shades of greens from 
satellite photographs and calculate the percentage of the vegetation 
detected (Kadmon & Harari-Kremer, 1999). In this decade, the calcu-
lation and detection evolved to be more refined and can be used with 
different applications, including identifying greenery from eye-level 
photographs. This method had been tested with correlation to see its 
agreement with manual selection tool, using a script written by re-
searchers (Li et al., 2015). It had also been used to link street level 
greenery with walking behavior and physical activities (Lu, 2019; Lu 
et al., 2018) and mental health (Kumakoshi et al., 2020). Another study 

used color-detection as a base to build a more complex visible vegetation 
index tool (Labib et al., 2021). 

A notable color detection tool included Brown Dog Green Index 
Extractor (BDGI). BDGI Extractor is a part of Brown Dog a data trans-
formation service platform. The extractor uses the CIELAB color space to 
separate the pixels into two categories: green and not green. Researchers 
set the three CIELAB color threshold components (lightness, green–red, 
blue-yellow) by iteratively varying the components and running the 
segmentation on a set of ten sample images, then visually inspecting the 
segmentation of the images for best fit to the images (Padhy et al., 2015). 
BDGI has been used in studies to identify vegetation density from street 
view images and eye-level photographs. The example of these studies 
included one that explored the fitting curves for the relationships be-
tween different types of vegetation and preference (Jiang et al., 2015a; 
Suppakittpaisarn et al., 2019a), a study relating geographical greenness 
with teenagers’ experience with nature (Li et al., 2018a), and a rela-
tionship between the green density of a participant’s route to work and 
their health outcomes (Jiang et al., 2020). 

Meanwhile, as researchers have wider access to available big dataset 
of street photography, semantic segmentation technique has been 
developed to identify objects from photographs, including measuring 
eye-level density of vegetation (Yu & Wang, 2016). By deep learning, the 
algorithm assigns each pixel in an image a label, identifying the object it 
represents such as trees, terrain, or cars using the system called fully 
convolutional network (FCN) (Badrinarayanan et al., 2017). This tech-
nique had been tested for accuracy (Yu & Wang, 2016) and suggested for 
urban landscape studies (Li et al., 2018b). One of the advanced tools for 
this technique included PSP-Net. PSP-Net is a neural network architec-
ture for pixel-wise semantic segmentation, which an advanced ability in 
considering the pixel’s contexts through spatial pyramid pooling (Zhao 
et al., 2017). However, there is limited number of studies that 
mentioned PSP-Net as a tool to explore vegetation density and human 
well-being, but a few recently emerged. For example, a study used PSP- 
Net to identify green quantity in the relationship between green quantity 
and quality and number of park visitors (Yang et al., 2021). 

1.4. Critical knowledge gap 

For designers, planners, and researchers to establish the dos-
e–response relationships between nature and human health and other 
studies regarding urban landscapes, clear ways to quantify urban nature 
as experienced by humans becomes important. While many tools are 
invented to assess the vegetation density of eye-level scenes, they have 
not been compared to see if they are consistent with each other. Without 
the test, the researchers might not be able to compare the data acquired 
from the older tools and the newer ones. 

Furthermore, each tool might be beneficial in some area but not the 
other. For example, if there are many shaded areas that change the 
colors of the foliage so they are less green, would color detection method 
identify the vegetation density differently than manual detection and 
semantic segmentation? If the trees were denser, obstructing the shapes 
of the mass or if the lawn were too flat, would the semantic segmentation 
identify different vegetation density levels than the other two methods? 

Thus, in this study, the researchers selected a measurement each 
from three different approaches in vegetation density assessment: 
manual selection by Photoshop Histogram Tool, color detection by 
BDGI, and semantic segmentation by PSP-Net. The researchers asked the 
following questions:  

- To what extent do the vegetation density percentages measured by 
manual selection, BDGI, and PSP-Net agree with each other?  

- To what extent do vegetation density and percentage of shades 
predict the odds of disagreement between measurements? 
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2. Methods 

2.1. Eye-level imagery 

In this study, the researchers used 201 photographs portraying 
different levels of urban nature from four different projects conducted 
across the Sustainable and Human Health Network (Jiang et al., 2014a; 
Jiang et al., 2015a; Jiang et al., 2014b; Jiang et al., 2015b; Suppa-
kittpaisarn et al., 2019aJiang et al., 2014a; Jiang et al., 2015a; Jiang 
et al., 2014b; Suppakittpaisarn et al., 2019a). The photographs were 
taken from various stages of urban development across the United 
States, including city centers, urban parks, and suburban housing de-
velopments. The photographs were selected to represent different 
vegetation density across varying urban spaces. Most were taken in the 
Midwestern region. The region was selected due to two following rea-
sons 1) the settlements were built on the flatter terrains, eliminating the 
possible effects of topography 2) the cities across the region contained 
several strategies towards GSI. The photographs were taken during 
summers of 2012–2015, between 10 am-3 pm to control for foliage color 
and lighting. The photographers aimed the camera straight forward at 
approximately 1.5 m above the ground. This height was chosen for the 
approximate eye-level based on the mean height of the US population in 
1996 birth cohort, who would be an adult of 25-year-old at the time of 
the study (NCD Risk Factor Collaboration, 2016). Since the mean height 
is 1.65 m, the eye-level of the average population is 1.5 m accordingly. 
The subjects of the photographs included street trees, shrubs, grasses, 
and in some cases, bioretention planting. To control the variable and 
emphasize the landscape features, these photos contained minimal 
amount of people and unusual features such as sport cars, traffic cones, 
or unique architecture, and any stages of disrepair and construction 
were removed. These photographs were set at 300 dpi resolution before 
being measured for greenness. According to Qualtrics Sample Size 
Calculator, the sample size were sufficient for generalization at 90 % 
confidence level and 6 % margin of error. 

2.2. Green indices 

The researchers measured the green indices in three ways: manual 
selection via Photoshop Histogram, PSP-Net, and BDGI Extractor. 

Manual selection via Photoshop Histogram: to obtain vegetation 
density values from the images, we trained the student members of 
Sustainability and Human Health Laboratory (US and Thailand) and 
Virtual Reality Laboratory of Urban Environments and Human Health 
(Hong Kong) to extract the vegetation density data (n = 5). These stu-
dents were studying in landscape architecture and environmental psy-
chology and were familiar with similar quantitative landscape studies. 
The researchers were preliminary tested to have good inter-rater reli-
ability. The trained researchers used Quick Selection Tool to select the 
pixels within the images that represent any plants seen including trunks, 
stems, and non-green parts. The pixels selected were counted by His-
togram Tool and calculate into percentage from total number of pixels in 
the images. The researchers coded this index as HTGI. 

PSP-Net: to obtain vegetation density values from the images, re-
searchers ran the images through the analytical code. The processed 
photographs were made into several layers of identified labels such as 
sky, vegetation, terrain, road, etc. For this study, the researchers com-
bined the vegetation layer, which contained trees and shrubs, with the 
terrain layer, which contained grasses and groundcovers into one layer. 
The percentage of pixels that was the combination between these two 
layers were used for the comparisons with other vegetation density 
values. The researchers coded this index as PSPGI. The tool is accessible 
at the following link: https://github.com/hszhao/PSPNet. 

BDGI Extractor: to obtain vegetation density values from the images, 
researchers uploaded the images into the cloud server of Brown Dog 
service. The computer will extract the metadata from the images, 
including the percentages of green pixels recorded as Brown Dog Green 

Index. The images generated from this process showed positive and 
negative spaces from green and non-green pixels. The researchers coded 
this index as BDGI. The tool is accessible at the following link: 
https://browndog.ncsa.illinois.edu/. 

The extracted images were shown in Fig. 1. 

2.3. Shades 

The percentage of shades were analyzed by manually selected the 
shaded pixels with Quick Selection Tool and calculated with Photoshop 
Histogram Tool for further analysis. 

2.4. Statistical analysis 

To explore the agreements between the tools. The researchers 
calculated the Cronbach’s alpha value of the three tools. Then, the re-
searchers performed pair-wise comparisons through Cronbach’s alpha, 
Pearson’s correlation, and Bland-Altman’s analysis. As Givarina (2015) 
suggested, while the correlation test or Bland-Altman’s analysis alone 
might not make solid conclusions of the strength of agreements, the 
combination of more than one tools can demonstrate more reliable 
conclusions. 

To test whether shadows and vegetation density may predict the 
chances of having disagreements between the tools, the researchers 
conducted binary logistic regressions between each pair of comparison, 
using the percentage of shade and vegetation density as the independent 
variables and the probability of the density values would disagree by 
Bland-Altman’s analysis as the dependent variable. 

3. Results 

3.1. To what extent do the vegetation density percentages measured by 
manual selection via Photoshop Histogram, BDGI, and PSP-Net agree with 
each other? 

To answer this question, the researchers ran three statistical tests: 
Cronbach’s alpha calculations, correlation tests, and Bland-Altman an-
alyses. If the measurements agreed, Cronbach’s alpha should be above 
0.8, correlation tests would provide p < 0.05 with r-value that is close to 
1, and Bland-Altman’s analysis should provide more than 95 % 
agreement. 

All three measurements agreed with each other as tested by Cron-
bach’s alpha (α = 0.97). Pairwise, manual selection agreed with both 
BDGI (α = 0.98) and PSP-Net (α = 0.94), and BDGI and PSP-Net agreed 
with each other (α = 0.94). 

Pairwise correlations showed all pairs of measurements are signifi-
cantly correlated with each other. In term of Bland-Altman’s test, 
manual selection by Photoshop Histogram agreed with BDGI at more 
than 95 %, which was the same level of agreements with standard. The 
pairs between PSP-Net and other two measurements were still showing a 
high level at more than 90 %. The results for correlation test and Bland 
Altman’s analyses are shown in Table 1. 

With all the comparison methods combined, the researchers could 
conclude that all three measurements are highly in agreements. How-
ever, manual selection by Photoshop Histogram agreed more highly 
with BDGI, while PSP-Net showed a higher disagreement, if only 
slightly, from both other measurements. The disagreements between 
BDGI and PSP-Net, while still extremely low, were the highest among all 
comparisons. 

3.2. To what extent do vegetation density and percentage of shades 
predict the odds of disagreement between measurements? 

For this question, the researchers ran a binary logistic regression to 
explore the odds that the paired measurements of a photograph would 
disagree according to the Bland-Altman’s analyses. Green Index 
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calculated by manual selection and percentage of shades were used as 
independent variables. The assumptions regarding logistic regression 
were tested and met. 

For BDGI-HTGI relationships, a model logistic regression reported 
non-significant relationship Chi-square (2) = 0.48p = 0.79, The model 
explained 1 % of the variables (Nagelkerke R-square,) and is classified 
for 96.1 % of the case. Meaning that neither shadows nor vegetation 
density predicts the odds of errors between these measurements. 

For PSPGI-HTGI relationships, a model logistic regression reported 

significant relationship Chi-square (2) = 11.15, p < 0.05, The model 
explained 14.7 % of the variables (Nagelkerke R-square,) and is classi-
fied for 94.1 % of the case. Percentage of shades was found not to be a 
significant predictor, but vegetation density was. According to the 
analysis, as the vegetation density increases for 1 %, the odds of the 
vegetation density in a photograph to disagree between these two 
measurements increases by 1.06. 

For PSPGI-BDGI relationships, a model logistic regression reported 
significant relationship Chi-square (2) = 13.91, p < 0.05, The model 

Fig. 1. The processed images from different extractors.  

Table 1 
Comparisons of the agreements between three pairs of tests.  

Pair Cronbach’s Alpha Correlation tests Bland-Altman Plots 

r (199) Significance level Mean differences SD Differences B-A Agreement 

HTGI-BDGI  0.98  0.96 p < 0.0001  − 6.2  6.5  95.80 % 
PSPGI-HTGI  0.94  0.98 p < 0.0001  1.0  8.5  92.60 % 
PSPGI-BDGI  0.94  0.98 p < 0.0001  − 7.2  8.87  91.40 %  

Table 2 
The results of logistic regressions linking percentage of shades and vegetation density to the odds of disagreements between each pair of measurements.   

B S.E. Wald df Sig. Odd Ratios 95 % C.I. for Odd Ratios 

Lower Upper 

HTGI-BDGI Vegetation density  0.01  0.02  0.44  1.00  0.51  1.01  0.98  1.05 
Shadows  0.00  0.02  0.04  1.00  0.85  1.00  0.96  1.03 
Constant  − 3.63  0.79  21.23  1.00  0.00  0.03     

PSPGI-HTGI Vegetation density  0.06  0.02  8.27  1.00  0.00  1.06  1.02  1.10 
Shadows  − 0.01  0.01  0.64  1.00  0.42  0.99  0.96  1.02 
Constant  − 5.17  1.02  25.46  1.00  0.00  0.01     

PSPGI-BDGI Vegetation density  0.06  0.02  9.76  1.00  0.00  1.06  1.02  1.10 
Shadows  − 0.01  0.01  0.61  1.00  0.44  0.99  0.96  1.02 
Constant  − 5.39  1.05  26.36  1.00  0.00  0.00     

a. Variable(s) entered on step 1: Vegetation density, Shadows. 
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explained 17.4 % of the variables (Nagelkerke R-square,) and is classi-
fied for 93.7 % of the case. Percentage of shades was found not to be a 
significant predictor, but vegetation density was. According to the 
analysis, as the vegetation density increases for 1 %, the odds of the 
vegetation density in a photograph to disagree between these two 
measurements increases by 1.06. Table 2 shows the composite results of 
all three logistic regressions. 

4. Discussion 

4.1. Key findings 

In this paper, researchers tested the agreements of three vegetation 
density measurements from three different human and computer-based 
approaches: manual selection by Photoshop Histogram, color detection 
by Brown Dog Green Index Extractor, and semantic segmentation by 
Pyramid Scene-Parsing Network. The researchers also tested the extent 
to which vegetation density and percentage of shade may influence the 
accuracy of the tools. 

The findings suggested that all three were in good agreements, as 
suggested by Cronbach’s alpha above 0.9 in all paired comparison and p- 
value under 0.001 from all the pairwise correlation tests. However, only 
the HTGI-BDGI pair passed Bland-Altman’s Analysis at above 95 %. This 
means that among the three pair, Brown Dog Green Index Extractor 
provided slightly closer results with manual selection by Photoshop 
Histogram. Binary logistic regression suggested that the odds of the 
outlier increased as vegetation density increased. For every 1 % of 
vegetation density in a photograph, the odds for the disagreement be-
tween PSP-Net and other tools increased by 1.06. However, more factors 
may contribute to these disagreements. 

With the results of this study and previous information about these 
three measurements, researchers can make better decisions for the tools 
most appropriate for their research. Table 3 made comparisons between 
three tools. 

4.2. Contributions and implications 

This study confirmed that these measurements are accurate and shed 
lights on further developments of vegetation assessment methods. The 
results reflected previous comparison between machine and human as-
sessments (Li et al., 2015; Suppakittpaisarn, 2017). This study further 
confirmed that the vegetation density measured from all these three 
tools are comparable. However, higher margin of error may occur with 

PSPGI at higher vegetation density, although PSPGI might have poten-
tial above BDGI with seasonal foliage due to its assessment method that 
does not rely on color alone. Such discrepancies could point out the 
further development direction of eye-level vegetation assessment tools. 

Landscape designers, planners, and policy makers can include these 
computer-based tools for assessing existing or future designs in terms of 
environmental performance, visual quality, and vegetation availability. 
Such effects may help us accumulate more evidence and lead to 
evidence-based design to improve human and ecological well-being. 
Furthermore, landscape researchers can use the results of the study to 
explore different research topics, e.g., the relationships between doses of 
urban nature towards human well-being, the changes in vegetation 
density and ecological well-being (Bergen et al., 2009; Sullivan et al., 
2014). In addition, similar tools can be developed to explore the extent 
to which other landscape elements can provide human well-being in 
high-density environment that are difficult to grow plants. 

4.3. Limitations and opportunities for future studies 

A few limitations must be addressed regarding this study. First, most 
testing images were taken during summer when plants have green 
leaves, thus might improve the accuracy of BDGI, a color-based detec-
tion method. Furthermore, most photographs were taken in the condi-
tion with bright sunlight and clear skies, which is most suitable for BDGI. 
In the future, researchers should also compare the performance of the 
same tools for images taken in other seasons or weather conditions. 

Secondly, urban streetscapes are vibrant and dynamic, often filled 
with pedestrians and cars. Different streetscapes may also have unique 
architecture and street elements. In this study, we deliberately selected 
images containing the minimal number of human activities and 
distinctive features. Adding these elements into the images might affect 
the accuracy of these measurements and the physio-psychological im-
pacts of the images. Future studies should compare the images with 
people and distinctive features to improve the research tools towards 
higher practicality. 

Thirdly, the selected images came from a limited geographic area, 
mid-western United States. Such images are arguably representative to 
landscapes in a broad range of locations in the United States, but not 
those in other countries with distinct topography, culture, and street 
typology. While the computer vision and assessment of vegetation 
density is influenced by geographical locations, some environmental 
factors, such as plant species, shadows, and building density, may affect 
the results. Hence, future studies should be repeated in different street 
patterns from across different geographical and cultural locations to test 
out the generalizability of this study. 

Fourthly, due to their landscape architectural background, the 
trained researchers may have different perception of vegetation density 
than laypeople (Suppakittpaisarn et al., 2019b). Future study may 
explore crowd-sourced options to assess vegetation density perceived by 
laypeople. 

5. Conclusion 

As the landscape researchers and practitioners seek ways to assess 
and analyze urban nature for evidence-based designs, they need new 
tools to assess different quantities of vegetation, including eye-level 
vegetation density. Several ways to assess vegetation density had been 
developed; however, their agreements may need to be assessed for 
future uses. This study compared three established tools to assess the 
eye-level vegetation density and found that while all three measure-
ments agreed, higher vegetation density may influence a higher odd in 
disagreement for a semantic segmentation tool. This research helps 
confirm to landscape designers and planners that these tools are reliable, 
as tested with each other and suggest the improvement on these 
computer-based assessments. It also informs researchers about the tools 
they can use for landscape and human health research. Future studies 

Table 3 
The comparisons of Histogram Tool, Brown Dog Green Index Extractor, and PSP- 
Net.   

Histogram tool Browndog PSP Net 

Mechanisms Human 
judgement and 
computer 
calculation 

Color detection Semantic 
segmentation 

Cost Depends on 
software 

Free Free for non- 
commercial use 

Required skills Graphic 
software 

Website use Basic coding 

Agreement 
with human 
perception 

n/a Higher agreement High, but not as 
high as Brown Dog 

Limitations Time- 
consuming 

green under shadow 
or strong light 
non-green grass or 
vegetations 

Lower level of 
agreements with 
higher vegetation 
density 

Additional 
benefits 

Fully flexible Preference 
prediction (early 
stage); Can identify 
greenness of a route 
via map and GPS 

Identify more than 
vegetation, such as 
cars, buildings, etc.  
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should be conducted for agreements in different conditions. 
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