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• Greater exposure to forest significantly
tied to lower COVID-19 mortality rates.

• Forest outside park yielded a larger effect
size than forest inside park.

• Exposure to open space yielded mixed as-
sociations with COVID-19 mortality rates.

• Optimal buffer distances for exposure to
key green spaces were identified.

• A framework on the causal links between
green space exposure and mortality rates.
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The COVID-19 pandemic has caused a huge loss of human life globally. However, few studies investigated the link be-
tween exposure to green space and risk of COVID-19 mortality rate, while also distinguishing the effects of various
types of green space, considering the spatial distribution of human population and green space, and identifying the op-
timal buffer distances of nearby green space. It is critical and pressing tofill these significant knowledge gaps to protect
and promote billions of people's health and life across the world.
This study adopted a negative binomial generalized linearmixed-effects model to examine the association between the
ratios of various types of green space, population-weighted exposure to those various types of green space, and COVID-
19mortality rates across 3025 counties in the USA, adjusted for sociodemographic, pre-existing chronic disease, policy
and regulation, behavioral, and environmental factors.
The findings show that greater exposure to forest was associated with lower COVID-19 mortality rates, while devel-
oped open space had mixed associations with COVID-19 mortality rates. Forest outside park had the largest effect
size across all buffer distances, followed by forest inside park. The optimal exposure buffer distance was 1 km for forest
outside park, with per one-unit of increase in exposure associated with a 9.9 % decrease in COVID-19 mortality rates
(95 % confidence interval (CI): 6.9 %–12.8 %). The optimal exposure buffer distance of forest inside park was 400 m,
with per one-unit of increase in exposure associated with a 4.7 % decrease in mortality rates (95 % CI: 2.4 %–6.9 %).
The results suggest that greater exposure to green spaces, especially to nearby forests, may mitigate the risk of COVID-
19 mortality. Although findings of an ecological study cannot be directly used to guide medical interventions, this
study may pave a critical new way for future research and practice across multiple disciplines.
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1. Introduction

Since its outbreak in 2019, Coronavirus disease (COVID-19) has spread
rapidly throughout the world, leading to numerous infections and deaths.
In the United States, COVID-19 was largely responsible for the 17.7 %
increase in total deaths from 2019 to 2020 and was the third leading
cause of death after heart disease and cancer (Ahmad et al., 2021). More-
over, by the end of 2020, there had been an estimated 348,600 deaths
attributed to COVID-19 in the USA; by February 2020, this had increased
to an estimated 933,000 deaths (John Hopkins University &amp and
Medicine, 2021; Viglione, 2020). Further, it was estimated that COVID-19
has reduced life expectancy in the USA by 1.13 years annually (Andrasfay
and Goldman, 2021).

The COVID-19 pandemic also overwhelmed healthcare systems and
caused substantial economic losses in the USA. The testing for SARS-CoV-2
infections and treating cases of COVID-19 createdpressure on testing facilities
and hospitals (Dyer, 2020; Miller et al., 2020). The large numbers of patients
whowere critically ill with COVID-19 or other severe health conditions exac-
erbated by COVID-19 led to shortages of beds in intensive care units (ICUs)
compounded by other critical health conditions (Halpern and Tan, 2020). It
has been estimated that by 2030 the cumulative economic costs associated
with the COVID-19 pandemic due to premature deaths, unemployment,
and decreased business revenue will be equivalent to US$ 1.4 trillion in
gross domestic product (Cutler and Summers, 2020; Chen et al., 2021).

Accumulating evidence suggests links between nature, the built envi-
ronment, and COVID-19 mortality rates. Exposure to air pollution (Ali
and Islam, 2020; Konstantinoudis et al., 2021; Liang et al., 2020), crowded
housing (Brandén et al., 2020; Hu et al., 2021; van Ingen et al., 2021), and
lower average temperature (Benedetti et al., 2020; Wu et al., 2020) have
been found to increase deaths from COVID-19. However, despite the
manifold salutary effects that exposure to nature has on human health,
the relationship between green space and COVID-19 mortality rates has
received far less attention (Jiang et al., 2021b; Klompmaker et al., 2021;
Lu et al., 2021a).

1.1. How may exposure to green space alleviate COVID-19 mortality rates?

An overwhelming number of empirical studies have shown that expo-
sure to green space can improve both physical and mental health (Jiang
et al., 2014; Lu et al., 2021a, b). In particular, studies have demonstrated
that contact with green space enhances the human body's capacity against
viruses by increasing Natural Killer (NK) and T cells and cytotoxic activities
(Li, 2010), reducing inflammation (Kuo, 2015; Ribeiro et al., 2019), and
replenishing gut microbiota (Parajuli, 2019; Parajuli et al., 2020; Roslund
et al., 2020). Moreover, compared to non-critically ill COVID-19 patients,
hospitalized COVID-19 patients with severe or fatal cases exhibit immune
interference (e.g., abnormal lowNK and T cell counts and exaggerated cyto-
toxic activities) (Castelli et al., 2020; Qin et al., 2020), hyper-inflammation
or a “cytokine storm,” (i.e., delayed but ultimately elevated concentrations
of pro-inflammatory cytokines) (Paranjpe et al., 2020; Potempa et al., 2020;
Yang et al., 2020), and decreaseddiversity in their gutmicrobiota (Dhar and
Mohanty, 2020). Thus, contact with green space has the potential to reduce
the severity of COVID-19 illness and death.

1.2. A critical knowledge gap: the relationship between different types of green
space and COVID-19 mortality rates

Several studies have found a significant association between green space
and COVID-19 mortality rates in the USA, where green space is defined as
the total area of vegetation within a boundary (e.g., Normalized Difference
Vegetation Index (NDVI) or Leaf Area Index (LAI)) (Klompmaker et al.,
2021; Lee et al., 2021; Russette et al., 2021). However, these studies have
not distinguished between open space, forest, grassland/herbaceous, and
hay/pasture areas, and nor have they compared the effects of green space
inside and outside parks on COVID-19 health outcomes. These aspects are
important to examine, as there is evidence that the effect of green space
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on health varies with the type of green space and whether it is inside or out-
side a park (Akpinar et al., 2016; Ekkel and de Vries, 2017; Kim and Miller,
2019; Johnson et al., 2021). For instance, green space and parks have been
found to be negatively associated with COVID-19 infection rates (Wang
et al., 2021a, b; Johnson et al., 2021), whereas park mobility and green
space with better accessibility have been found to be positively associated
with COVID-19 infection rates (Pan et al., 2021; DePhillipo et al., 2021).
Thus, it remains unclear whether and to what extent different types of
green space affect the COVID-19 mortality rates.

In addition, studies have estimated the amount of greenness in a county
but have ignored the spatial distribution of green space in relation to popu-
lation and urban fabric (Klompmaker et al., 2021; Russette et al., 2021).
This should be remedied, as the accuracy of the widely used metric for
greenness can be greatly improved by considering the spatial relationships
between the location of green space and population distributions (Ben
et al., 2019). Furthermore, although deciles of greenness were used to
assess the dose–response associations (Russette et al., 2021), the dose–
response associations for different types of green space within various
buffer distances remain unclear. Many studies have suggested that the
effect of green space on people's health is dependent on its distance from
people, such that its positive effects on health effect may decrease beyond
a certain threshold distance (Coombes et al., 2010; Grahn and Stigsdotter,
2003; Nielsen and Hansen, 2007). Nevertheless, it is not known whether
nearby greenspace has a significantly stronger negative association with
mortality risk than distant green space or, if so, which distances between
people and green space are optimal for decreasing COVID-19 mortality
risk. These critical knowledge gaps must be filled to enable policymakers
and urban planners to develop evidence-based urban greening solutions
and policies to enhance public health in the current and future pandemics.

1.3. Research questions

In this study, we investigated the associations between the ratio of
the areas of six types of green space to overall county area, population-
weighted exposure to these six types of green space at various buffer dis-
tances, and full-year COVID-19 mortality rates, controlling for covariates.
We sought to answer the following three research questions. (1) What are
the associations between the ratio of six types of green space area to overall
county area and COVID-19 mortality rates? (2) What are the associations
between population-weighted exposure to six types of green space and
COVID-19 mortality rates at various buffer distances? (3) For the types of
green space that are significantly associated with COVID-19 mortality
rates, which exposure distances have the strongest associations?

2. Methods

We combined COVID-19 mortality data, sociodemographic characteris-
tic data, healthcare and SARS-CoV-2 testing data, pre-existing chronic dis-
ease data, policy and regulation data, behavioral data, and environmental
factors from diverse sources for 3025 counties in the USA. The green
space exposures were calculated in ArcGIS 10.6.1 and Google Earth Engine
(GEE) platform. A negative binomial generalized linear mixed-effects model
was used to evaluate the association between the ratio of each of the six
types of green space to COVID-19 mortality rates in the USA from January
22 to December 31, 2020, adjusted for the above-mentioned factors. Then,
we examined the associations between the population-weighted exposure
to six types of green space at various buffer distances up to 4 km and
COVID-19 mortality rates, adjusted for covariates.

2.1. Data

2.1.1. Data of COVID-19 mortality
COVID-19 mortality data are publicly available on the websites of the

USCenters for Disease Control and Prevention (CDC) and State government
(Kolak et al., 2021). We defined the COVID-19 mortality rates as the cumu-
lative number of COVID-19 deaths per 100,000 people for each of 3025
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counties from January 22, 2020 to December 31, 2020 (Fig. 1). We set the
end of our research period to the end of 2020 to eliminate the possible con-
founding effect from large-scale vaccination, which had a significant effect
on COVID-19 mortality rates (see Supplementary Table 1 for descriptive
statistics of COVID-19 mortality data).

2.1.2. Data of exposure to green spaces
We assessed green space exposure using two metrics. The first metric

quantified the ratio of each of the six types of green space to the total area
of a county. We extracted the four land covers with dominant natural
elements—forest, grassland/herbaceous, pasture/hay, and developed open
space—from the 2016 National Land Cover Database (NLCD). As defined in
Supplementary Table 2, the forest consists of areas of deciduous, evergreen,
and mixed forest that are dominated by large trees; grassland/herbaceous
consists of areas dominated by herbaceous plants; hay/pasture consists of
areas dominated by grasses; and developed open space consists of vegetated
areas within developed settings (NLCD, 2016). We also distinguished open
space and forest within a park from open space and forest outside a park
using the USA Parks boundaries derived from the USA Parks data from the
Environmental Systems Research Institute (ESRI, 2021). We then used
ArcGIS to calculate the ratios of the six types of green space—forest inside
park; forest outside park; hay/pasture; grassland/herbaceous; developed
open space inside park; and developed open space outside park—to the
total area of a county (Fig. 2).

The second metric used GEE to quantify the population-weighted expo-
sure to green space at various distances from human settlements (Gorelick
et al., 2017). This metric measures the mean area (m2) per person of expo-
sure to green space within a certain buffer distance. We extracted the
above-mentioned six types of green space using the 2016 NLCD dataset
(Yang et al., 2018) and USA Parks boundary (ESRI, 2021), and located the
spatial distribution of residents in the USA using the 2020WorldPop Global
Project Population Dataset (Sorichetta et al., 2015) in the GEE. The 2020
WorldPop Dataset depicts the estimated number of people residing in each
100 × 100-m grid cell matched to their associated administrative units
(WorldPop, 2020). Then, the 30 -m resolution NLCD, 2016 Landsat imagery
Fig. 1. County-level COVID-19 deaths per 100,000 peopl
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was re-projected to match the 100 -m spatial resolution of the WorldPop
Dataset in GEE. This enabled the population-weighted exposure to green
space within various buffer sizes in each county to be calculated using the
following Eq. (1) (Chen et al., 2022),

FE ¼ ∑N
i¼1Pi � Fb

i

∑N
i¼1Pi

(1)

where Pi represents the population of the ith grid, Fibrepresents the land cover
of the ith grid at a buffer size of bmeters,N denotes the total number of grids
for a given county, and FE is the estimated level of green space exposure for
the given county (see Supplementary Table 3 for descriptive data on green
space exposure). This metric considers the spatial relationship between pop-
ulation distributions and provision of green space and, unlike previous stud-
ies, gives proportionally greater weight to green space where more people
reside, which previous studies fail to address (Chen et al., 2022). We esti-
mated population-weighted exposures to green spacewithin 4 km, as studies
have suggested few walking activities occur beyond 4 km from a given
person's location (Yang and Diez-Roux, 2012). Accordingly, we set buffer
intervals of 200-m for less than or equal to 2 km and 500-m for 2–4 km.

2.1.3. Potential covariates
We selectmultiple types of potential covariates in the statistical analysis.

Many studies have identified the sociodemographic, chronic disease, behav-
ioral, healthcare, and environmental factors linked to COVID-19 mortality.
Thus, we obtained the county-level sociodemographic, healthcare, and
SARS-CoV-2 testing data from the US Census Bureau (US Census Bureau,
2019) and the US COVID Atlas of the Center for Spatial Data Science
(Kolak et al., 2021). These county-level data consist of population density,
the percentage of households with children headed by a single woman;
the proportion of non-Hispanic black, white, and Hispanic people; the pro-
portion of residents older than 65; median household income; Gini index of
income inequality; poverty rate; median housing value; unemployment
rate; the proportion of residents without a high school diploma andwithout
a college degree; percentage of the population without health insurance
e in the USA from January 18 to December 31, 2020.



Fig. 2. Ratios of the six types of green space to the total area of each county across the USA. (A) forest inside park (B) forest outside park; (C) hay/pasture; (D) grassland/
herbaceous; (E) developed open space inside park; (F) developed open space outside park.
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coverage, and SARS-CoV-2 testing rates (see definitions and data source in
Supplementary Table 4). We include rates of pre-existing chronic diseases
that have been shown to affect COVID-19 mortality risk: rates of hyperten-
sion, heart failure, stroke mortality, diabetes, and obesity (CDC, 2021).
Moreover, we included policy and regulation factors: stay-at-home order
intensity, public mask mandates, and bar and restaurant closing and
reopening orders (Chernozhukov et al., 2021; VoPham et al., 2020).
Further, we include the following behavior risk factors: the proportion of
current smokers and the proportion of essential workers, the proportion of
workers who commuted to work by public transportation, walking, and
private cars, respectively; the proportion of leisure-time physical inactivity;
and the median maximum-distance traveled, and foot traffic to various out-
4

of-home activities. Last, we select environmental risk factors that include
the concentration of particulate matter (PM) (i.e., 2.5-μm PM (PM2.5) and
10-μm PM (PM10)), temperature, relative humidity, precipitation, wind
speed, and transportation density. The descriptive statistics of covariates
and data sources are given in Supplementary Tables 1 and 4.

2.2. Statistical analysis

In the main model, we used a negative binomial generalized linear
mixed-effects model to evaluate the associations between the ratios of
each of the six types of green space and COVID-19 mortality rates, which
provides an appropriate error structure for fitting our over-dispersed count
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data. We employed state in analyses as a random effect to account for state-
level variability and non-independence in our data and spatial autocorrela-
tions. We also adjusted the analyses for a range of covariates. We applied
restricted maximum likelihood estimation with a negative binomial link
function. The variance inflation factor (VIF) test was used to identify
multi-collinearity between the independent variables. Variables with a VIF
greater than or equal to 4 were excluded from our models (O'Brien, 2007).

To identify the optimal exposure distance for significant types of green
space, we used a negative binomial generalized linear mixed-effects model
to evaluate associations between population-weighted exposures to the six
types of green space and COVID-19 mortality rates at various distances.
These analyses used the same sets of covariates as the main model, and
state was again used as a random effect. All of the explanatory variables
were centered and scaled.

The Moran's I test was used to assess the county-level spatial autocorre-
lations of COVID-19mortality residuals, where aMoran's I of 0.21 indicated
the presence of spatial autocorrelation (p < 0.0001). A Moran's I value of 0
indicates a lack of spatial autocorrelation, and positive values indicate
clustering of similar values. The analyses were performed in R v.4.1.2
(Team, 2015), and Moran’ I test was performed using the package ‘spdep’
(Bivand andWong, 2018), and the negative binomial mixed-effects models
were performed using the package lme4 (Bates et al., 2014).

2.3. Model validation

Due to the presence of spatial autocorrelation at the county level
(Moran's I = 0.21, p < 0.0001), we built additional spatial autoregressive
models (SAR) to validate the results of the negative binomial mixed effects
model. We used the queen's criterion to build the neighbors matrix and the
Akaike Information Criterion (AIC) values to compare the spatial error
model, spatial lag model, and spatial Durbin model. The spatial error
model had the lowest AIC values, which suggests that spatial dependence
occurs in the error term. The model validation confirmed the negative
associations between forest inside park, forest outside park, pasture, and
COVID-19 mortality rates (See results of the SAR models in Supplementary
Table 5). Given the structure of our data, model coefficients and the magni-
tude of the effects, it was appropriate to interpret our results using a nega-
tive binomial generalized linear mixed-effects model.

3. Results

3.1. Associations between the ratios of each of the six types of green space and
COVID-19 mortality rates

In themainmodel (ratio of green spaces and COVID-19mortality rates),
we found that after controlling for all covariates, more forest inside park and
forest outside park were significantly associated with lower COVID-19
mortality rates (p < 0.0001); while more open space outside park was
significantly associated with higher COVID-19 mortality rates (p < 0.01);
grassland/herbaceous, hay/pasture and open space inside park were not
significant, after controlling for all covariates (Fig. 3). Forest outside park
had the greatest effect size (β = −0.097), which was slightly larger than
that of forest inside park (β = −0.082). We found per one-unit of increase
in forest outside park was associated with a mortality rate ratio (MRR) of
0.908 (95 % CI: 0.879, 0.937); per one-unit of increase in forest inside
park was associated with a MRR of 0.922 (95 % CI: 0.888, 0.957); and
per one-unit of increase in developed open space outside park was associated
with a MRR of 1.058 (95 % CI: 1.023, 1.095). The β values, 95 % CIs, and
p-values are given in Supplementary Table 6 and theMRRs for all the covar-
iates included in the main model are given in Supplementary Table 7.

3.2. Associations of population-weighted exposures to green space with COVID-
19 mortality rates at various buffer distances

We also found that greater population-weighted exposure to forest inside
park, forest outside park and pasturewere significantly associatedwith lower
5

COVID-19 mortality rates at various buffer distances, while population-
weighted exposure to grassland/herbaceous, hay/pasture, open space inside
park, open space outside park were not significant. First, greater population-
weighted exposure to forest inside parkwas associatedwith lower COVID-19
mortality rates at buffer distances from 100 to 400 m and from 1800 m to
4 km, with the lowest COVID-19 mortality rates occurring at 4 km (β =
−0.050). The effect size increased as buffer distance increased, though
the increase remains limited (β = −0.048 at 400 m and β = −0.050 at
4 km, equating to a 4 % increase) (Fig. 4). With per one-unit of increase
in exposure to forest in park at 4 km resulted in a MRR of 0.951 (95 % CI:
0.930, 0.973).

Second, greater population-weighted exposure to forest outside parkwas
consistently associated with lower COVID-19 mortality rates across all
buffer distances, with the lowest COVID-19 mortality rate occurring at
1 km (β = −0.104). The effect size increased as the buffer distance in-
creased from 100 m to 1 km and decreased as the buffer distance increased
beyond 1 km (Fig. 5). We found a MRR of 0.901(95 % CI: 0.872, 0.931)
with per unit increase in exposure to forest outside park at 1 km. Third,
greater population-weighted exposure to pasture was associated with a
lower COVID-19mortality rates from 2500m to 4 kmwith increasing effect
size, with the greatest reduction in COVID-19 mortality rate occurring at
4 km (β = −0.036). With per one-unit of increase in exposure to pasture
at 4 km resulted in a MRR of 0.965 (95 % CI: 0.941, 0.990).

4. Discussion

We found that more forest was significantly associated with lower
COVID-19 mortality rates, whereas more developed open space had a
mixed association with COVID-19 mortality rates. The association between
population-weighted exposure to forest outside park and reduced COVID-19
mortality rates had the largest effect size across all buffer distances, followed
by forest inside park Further, the effect size of population-weighted exposure
to forest outside park increased up until a buffer distance of 1 km and then de-
creased. The effect size of population-weighted exposure to forest inside park
increased as buffer size increased and was greatest at 4 km, although only
slightly greater than the effect size at 400 m.

We acknowledge that causal relationships cannot be inferred from this
ecological study. However, given the large amount of theoretical and em-
pirical evidence, we argue that it is reasonable to interpret the observed as-
sociations as potential causalmechanisms. In this discussion, we proposed a
framework of potential causal mechanisms to explain that forest outside park
had a larger effect size than forest inside park on COVID-19 mortality rates,
and that developed open space had mixed associations with COVID-19
mortality rates. We also provide explanations for optimal exposure buffer
size for significant greenspace types. Lastly, we discussed the contributions
of our findings to the field and provide suggestions for future research.

4.1. Potential mechanisms for observed significant associations

4.1.1. How may exposure to green space alleviate COVID-19 mortality risk?
We found that exposure to forest and pasture was associated with lower

COVID-19 mortality rates in the USA after controlling for covariates, which
aligns with the findings of previous studies (Klompmaker et al., 2021; Lee
et al., 2021; Russette et al., 2021). It has been suggested that green space
may lower COVID-19 mortality risk if it boosts biological processes that
help people fight against prognosis of COVID-19 (Andersen et al., 2021;
Roslund et al., 2020), thereby decreasing their risk of death. Therefore,
we posit that contact with green space may reduce COVID-19 mortality
rates by increasing exposure to biogenic volatile organic compounds
(VOCs) and environmental microbiota, decreasing psychological stress
and exposure to air pollution, and increasing physical activity (Fig. 6).

Contact with forests increases exposure to phytoncides (e.g., terpenes,
limonene, and pinene), which are biogenic VOCs synthesized and emitted
into the air by trees. These VOCsmay compensate for reduced concentrations
of NK cells, boost NK defenses, and dampen excess inflammatory responses
in severely affected patients (Market et al., 2020; Osman et al., 2020). It is



Fig. 3. Exposure to forest is significantly associated with lower COVID-19 mortality rates after controlling for covariates. Coefficient values represent effect sizes for the
associations between the mortality rates of COVID-19 (cases per 100,000 people) and the ratio of grassland/herbaceous, hay/pasture, open space in park, open space
outside park, forest inside park, and forest outside park to the total area of a given county in the USA. Coefficient values are represented as dots, 95 % CIs are represented
as bars, and significant variables are shown in three colors: gray = p ≥ 0.01; yellow = p < 0.01; red = p < 0.0001.
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known that “forest bathing” increasesNK cell counts and activity (Li, 2010; Li
et al., 2008; Li et al., 2007; Tsao et al., 2018), which results in the activation
of receptors that recognize virus-infected cells and trigger cytotoxicity
processes (Market et al., 2020; Yokoyama, 2005). Exposure to nearby
greenspaces has also been associated with reduced inflammation levels,
which predicts the severity of disease in those with COVID-19 and their sur-
vival (Del Valle et al., 2020; Mandel et al., 2020; Ribeiro et al., 2019).

Exposure to forest and pasture may improve the disturbed gut mi-
crobe condition of COVID-19 patients (Dhar and Mohanty, 2020;
Donati et al., 2020; Yeoh et al., 2021; Zuo et al., 2020). Though human's
gut microbial composition is shaped by the interplay of multiple factors,
such as diet and genetics (Claesson et al., 2012), the microbiome from
surrounding green environments can transfer to humans (Grönroos
et al., 2019; Parajuli et al., 2018; Parajuli et al., 2020). Moreover, expo-
sure to forested and grassed areas diversifies gut microbiota profiles
(Roslund et al., 2020).

Forests can also decrease people's exposure to air pollutants (Nowak
et al., 2014). This is important, as air pollution is associated with delays
in recovery and more fatal conditions in COVID-19 patients (Domingo
6

and Rovira, 2020). This may be attributable to air pollution modifying
respiratory immune responses, perturbing anti-microbial responses, and
triggering the release of inflammatory cytokines (Bauer et al., 2012;
Ciencewicki and Jaspers, 2007; Glencross et al., 2020). It alsomay be attrib-
utable to a reduction in stress due to visual or physical contact with forests
(Gidlow et al., 2016; Jiang et al., 2014; Lee et al., 2011; Ulrich et al., 1991),
as psychological stress is linked to dysregulation of the immune system and
increased pro-inflammatory cytokines level (Gouin et al., 2012; Morey
et al., 2015; Steptoe et al., 2007).

In addition, physical activities such as walking or cycling have spiked in
greenspace since the outbreak of the pandemic (Geng et al., 2021; Lu et al.,
2021a, b; Venter et al., 2020; Venter et al., 2021). Researchers suggest
physical activities may boost immune responses (Amatriain-Fernández
et al., 2020; Fernandez et al., 2018; Nieman andWentz, 2019) andmitigate
systemic inflammation (Biddle et al., 2019; DeSantis et al., 2012; Nieman
and Wentz, 2019). Physical activity also reduces the risk of obesity,
which is a precursor to a range of chronic diseases that increases the risk
of COVID-19 mortality (Bastien et al., 2014; Calle and Thun, 2004; Chan
et al., 1994; Klang et al., 2020).



Fig. 4. Effect size of population-weighted exposure to forest inside park within 4 km on COVID-19 mortality rates. Coefficient values represent effect sizes in a negative
binomial mixed effects model of the relationship between mortality of COVID-19 mortality rates (death count per 100,000 people) and population-weighted exposure to
forest inside park. Coefficient values are represented as dots, gray = p > 0.05; red = p < 0.0001.
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4.1.2. Why may open space have a mixed association with COVID-19 mortality
rates?

We found that the ratio of open space outside park was associated with
higher COVID-19 mortality rates, whereas the ratio of open space in park
was not significant. This suggests that exposure to open space may not be
effective or even increase the COVID-19 mortality rate. These counterintu-
itive findings have not been clearly presented and interpreted by previous
studies. Based on the literature, we believe that the increased infection in
open space outside parks due to difficulty in achieving safe physical dis-
tancing may lead to higher mortality rates, despite the aforementioned
health benefits of exposure to green space.

Open space is defined as “areas with a mixture of some constructed ma-
terials, but mostly vegetation in the form of lawn grasses (NLCD, 2016).”
These areas most commonly include large-lot single-family housing units,
parks, and vegetation planted in developed settings. Thus, while open spaces
can provide health benefits by promoting physical activity, social interaction,
and reducing exposure to air pollutants (Lu et al., 2021a, b), the low supply of
Fig. 5. Effect size of population-weighted exposure to forest outside park within 4 km on
binomial mixed effects model of the relationship between mortality of COVID-19 morta
forest outside park. Coefficient values are represented as dots, red = p < 0.0001.
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open space per capita in urban areas makes it hard to achieve safe physical
distancing. In addition, park shutdown policies may also have increased
gatherings in open spaces outside park (e.g., streets, plazas, and backyards).
Although the risk of spreading the SARS-CoV-2 is much lower in outdoor
environments (Bulfone et al., 2021), people who participate in certain social
activities outdoors, such as chatting or partying, are at higher risk of spread-
ing the virus (Domènech-Montoliu et al., 2021; Peng et al., 2022). Therefore,
the increased SARS-CoV-2 infection risk in open space outside parkmay have
led to higher COVID-19 mortality rates. Nevertheless, more evidence is
needed to delineate the mechanisms underlying the mixed effects of expo-
sure to open space on COVID-19 mortality rates.

4.1.3. Why may forest outside park have a stronger effect than forest inside park
on COVID-19 mortality rate?

We found that the effect size of forest outside parkwas larger than that of
forest inside park with respect to decreasing COVID-19 mortality rates after
accounting for other covariates. This finding aligns with previous studies
COVID-19 mortality rates. Coefficient values represent effect sizes from a negative
lity rates (deaths count per 100,000 people) and population-weighted exposure to
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that have found a stronger health-promoting effect of outside-park areas
than inside-park areas (Reid et al., 2017; Allard-Poesi et al., 2022). First,
this may be due to the differences in the provision of forest inside and
outside park areas; that is, the US population has a ten times greater
within-walking-distance exposure to forest inside park than to forest outside
park (Fig. 7). Second, social activities in parks may increase the risk of
close contact and inhaling droplets from infected people (DePhillipo
et al., 2021; Praharaj&Hoon, 2022), thereby increasing SARS-CoV-2 infec-
tion risk. Thus, the increased infection risk associated with social interac-
tions in parks may have offset the other health benefits of exposure to
forests inside park on COVID-19 mortality rates. Third, the health effect of
exposure to forest inside park may have been weakened in part due to
policies in some states that closed parks to reduce COVID-19 spread risk
(Volenec et al., 2021; Smith et al., 2021).
Fig. 7.Mean population-weighted exposure to forest inside park and forest outside parkwi
the county level within each buffer distance.
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4.1.4. Optimal exposure buffer distance: what is it and why?
We found that the effect size of population-weighted exposure to forest

outside park on COVID-19 mortality rates increased with larger buffer
distance and reached a maximum at 1 km. This suggests that exposure to
forest outside park within 1 km is more effective than exposure to forest
outside park at a greater walking distance. This may be because nearby
forests are visited more often than forests located further away, as the fre-
quency of visits to greenspaces declines as distance to green space increases
(Coombes et al., 2010), and 1120 m (0.7 miles) is the mean walking
distance in the U.S. (Yang and Diez-Roux, 2012).

We also found that the effect size of forest inside park reached a maxi-
mum at 4 km, although the effect size is close to that at 400 m (a 2 %
increase). This suggests that the effect of forest inside park is less sensitive
to buffer size within walking distance. Studies suggest people walk much
thin 4 km. The bar represents the average population-weighted exposure to forest at
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longer distances for recreation purposes than other purposes (Yang and
Diez-Roux, 2012). Thus, considering the effect size and previous literature
on walking behaviors, we conclude that the optimal exposure buffer
distance for forest outside park to be 1 km and the optimal exposure buffer
distance for forest inside park to be 400 m.

4.1.5. Significance of other covariates
In the main model, we also found that air pollution and pre-existing

chronic disease variables were not significantly associated with COVID-19
mortality rates, which contradicts the findings of previous studies (Liang
et al., 2020; Mehra et al., 2020; Smith et al., 2021; Wu et al., 2020). The
main reason may be that green space partially offset the effects of air pollu-
tion and pre-existing chronic diseases on COVID-19 mortality rates in the
main model (Fig. 3), given that air pollution and pre-existing chronic dis-
ease variables were significantly associated with COVID-19 mortality
rates in models when other covariates are not adjusted (Supplementary
Table 8). Those significant associations become much weaker or disappear
when covariates are adjusted in the main model. Further, correlation
analysis shows that air pollution variables (PM2.5, PM10, and NO2) and
pre-existing chronic disease variables (diabetes, obesity, stroke, hyperten-
sion, and heart disease) were significantly correlated with green spaces
variables (Supplementary Table 9), which suggests that green space may
dilute the significant effect of the air pollution and pre-existing chronic dis-
eases factors on COVID-19 mortality rates in the main model. This is also
consistent with green space's effects on reducing air pollution (Nowak
et al., 2014; Nowak et al., 2018) and the risk of chronic diseases (Kondo
et al., 2018; Yang et al., 2021). Lastly, the nonsignificant result may
also be due to the 0.01 threshold value we used to indicate significance,
which is stricter than the 0.05 threshold value used by other studies. Never-
theless, we focus on measuring the relationship between exposure to green
spaces and COVID-19 mortality rates, adjusting for multiple categories of
covariates. A full range of investigations on various variables should be con-
ducted by future researchers inmultiple fields, andwe strongly suggest that
the effect of green spaces should not be neglected in these future studies.

4.2. Contributions and implications

To the best of our knowledge, this is the first nationwide study to distin-
guish relationships between different types of greenspaces and COVID-19
mortality rates using one of the largest countries as the research site. The
large geographical scope, the diverse environmental and demographical
characteristics, and the large sampling size ensured the generalizability of
our findings and make this study a strong reference for future studies at
the regional and global scales. We included population-weighted measure
as an indicator of exposure to greenspace, as this enables the quantification
of greenspaces by locating green spaces and human populations and gives
proportionally greater weight to areas where more people live. Therefore,
this new approach provides a more accurate estimation of people's real ex-
posure to green spaces than not population-weightedmeasures (Chen et al.,
2022). In addition, we investigated the dose–response associations between
different types of green spaces at various buffer distances and COVID-19
mortality rates, which allowed us to identify an optimal effect distance
that was previously lacking in the literature. Lastly, our framework has
generated newknowledge that enhances our understanding of the potential
causal relationship between exposure to green space and COVID-19mortal-
ity rates.

4.3. Limitations and future research opportunities

We acknowledge that this study has several limitations, which pose
opportunities for future research. First, this is an ecological study that
uses data at the county level. Despite the population-weighted measure
considering green space located in residents' immediate surroundings, it
is based on aggregated data. Future studies could use individual-level
data to confirm the association and use experiments to confirm the causal
mechanisms (Jiang et al., 2021a, b).
9

Moreover, the unit of analysis is county due to the data availability of
COVID-19 mortality and other confounding variables. Though county
data are widely used in nationwide studies, future studies should use
finer-grained data (i.e., data at the census tract or block level) to enhance
the accuracy and reliability of findings (Richardson et al., 2012). In addi-
tion, we used state as a random effect in the model to account for spatial
autocorrelation; we suggest that future studies should control for spatial
autocorrelation at finer geographic scales to further reduce bias. Further,
this study used two-dimension green space indicators, whichmight have in-
accuracies in estimating diverse combinations of different types of green
space (Giannico et al., 2022). Future studies could overcome this limitation
by incorporating 3D indicators (e.g., volumes of different types of vegeta-
tion). Lastly, this study investigated associations by using the whole-year
data collected in 2020, but the situation has become much more compli-
cated after 2021 due to the constant evolution of SARS-CoV-2 and implica-
tions of various vaccinations. Future research should examine these aspects.

5. Conclusion

Our findings demonstrate that greater exposure to green spaces, espe-
cially nearby forests, was significantly associated with a lower level of
COVID-19mortality rateswhile controlling formultiple categories of covar-
iates. We interpret these significant associations by integrating theoretical
and causal evidence provided by previous studies, to develop a framework
of potential causal mechanisms.

This study is an initial research effort and future studies should use
individual-level data to confirm the significance of the relationship be-
tween exposure to green space and reduced COVID-19 mortality rates.
We are hopeful that this study can open a new avenue of research, allowing
future researchers and professionals to consider green space planning as an
effective strategy to mitigate the effects of the COVID-19 pandemic and
those of other public health crises caused by infectious respiratory diseases.
We argue that green space is not a decorative and trivial element but a
critical civil infrastructure that protects people's health and well-being.
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